Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.08.467648

ABSTRACT

The response by vaccine developers to the COVID-19 pandemic has been extraordinary with effective vaccines authorized for emergency use in the U.S. within one year of the appearance of the first COVID-19 cases. However, the emergence of SARS-CoV-2 variants and obstacles with the global rollout of new vaccines highlight the need for platforms that are amenable to rapid tuning and stable formulation to facilitate the logistics of vaccine delivery worldwide. We developed a designer nanoparticle platform using phage-like particles (PLPs) derived from bacteriophage lambda for multivalent display of antigens in rigorously defined ratios. Here, we engineered PLPs that display the receptor binding domain (RBD) protein from SARS-CoV-2 and MERS-CoV, alone (RBD-SARS-PLPs, RBD-MERS-PLPs) and in combination (hCoV-RBD PLPs). Functionalized particles possess physiochemical properties compatible with pharmaceutical standards and retain antigenicity. Following primary immunization, BALB/c mice immunized with RBD-SARS- or RBD-MERS-PLPs display serum RBD-specific IgG endpoint and live virus neutralization titers that, in the case of SARS-CoV-2, were comparable to those detected in convalescent plasma from infected patients. Further, these antibody levels remain elevated up to 6 months post-prime. In dose response studies, immunization with as little as one microgram of RBD-SARS-PLPs elicited robust neutralizing antibody responses. Finally, animals immunized with RBD-SARS-PLPs, RBD-MERS-PLPs, and hCoV-RBD PLPs were protected against SARS-CoV-2 and/or MERS-CoV lung infection and disease. Collectively, these data suggest that the designer PLP system provides a platform for facile and rapid generation of single and multi-target vaccines.


Subject(s)
Coronavirus Infections , Lung Diseases , Infections , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.09.459664

ABSTRACT

Development of affordable and effective vaccines that can also protect vulnerable populations such as the elderly from COVID-19-related morbidity and mortality is a public health priority. Here we took a systematic and iterative approach by testing several SARS-CoV-2 protein antigens and adjuvants to identify a combination that elicits neutralizing antibodies and protection in young and aged mice. In particular, SARS-CoV-2 receptorbinding domain (RBD) displayed as a protein nanoparticle (RBD-NP) was a highly effective antigen, and when formulated with an oil-in-water emulsion containing Carbohydrate fatty acid MonoSulphate derivative (CMS) induced the highest levels of cross-neutralizing antibodies compared to other oil-in-water emulsions or AS01B. Mechanistically, CMS induced antigen retention in the draining lymph node (dLN) and expression of cytokines, chemokines and type I interferon-stimulated genes at both injection site and dLN. Overall, CMS:RBD-NP is effective across multiple age groups and is an exemplar of a SARS-CoV-2 subunit vaccine tailored to the elderly.


Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.20.444848

ABSTRACT

Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic especially for low- and middle-income countries. While vaccines against SARS-CoV-2 based on mRNA and adenoviral-vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are needed to meet global demand. In this context, protein subunit vaccines formulated with appropriate adjuvants represent a promising approach to address this urgent need. Receptor-binding domain (RBD) is a key target of neutralizing antibodies (Abs) but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists, including those activating STING, TLR3, TLR4 and TLR9, alone or formulated with aluminum hydroxide (AH), and benchmarked them to AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that the AH and CpG adjuvant formulation (AH:CpG) demonstrated the highest enhancement of anti-RBD neutralizing Ab titers in both age groups (~80-fold over AH), and protected aged mice from the SARS-CoV-2 challenge. Notably, AH:CpG-adjuvanted RBD vaccine elicited neutralizing Abs against both wild-type SARS-CoV-2 and B.1.351 variant at serum concentrations comparable to those induced by the authorized mRNA BNT162b2 vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and synergistically enhanced cytokine and chemokine production in human young adult and elderly mononuclear cells. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL